

The Role of Surgery in the Treatment of Inflammatory Bowel Disease

Who, When, and Where to Send to Surgery

September 2023 Amir Bastawrous, MD, MBA, FACS, FASCRS Swedish Colon and Rectal Clinic

Disclosure

I do not have any relevant financial relationships with any commercial interest that pertains to the content of my presentation


I was an investigator in ADMIRE II

Who to Send to Surgery

When to Send to Surgery

Obstructing Disease

Where to Send to Surgery

High Volume/Experience

Specialized Surgeons

Multidisciplinary Access

GI Pathologists

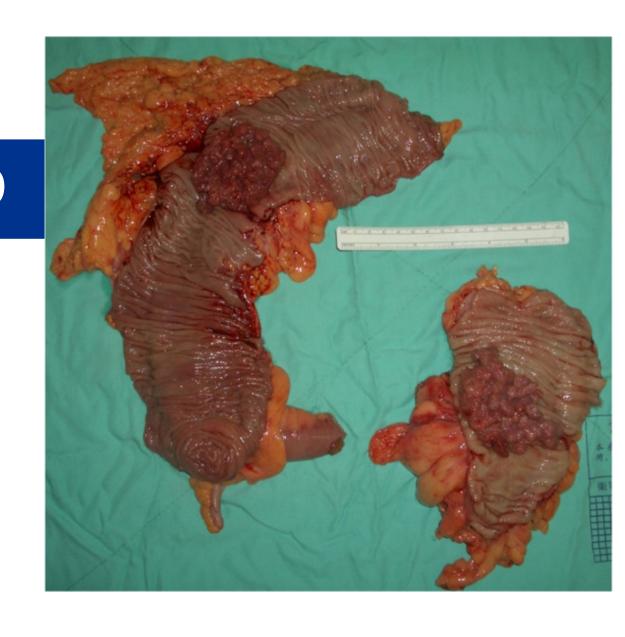
Focus on Challenging and Controversial Topics

Dysplastic Lesions in Ulcerative Colitis

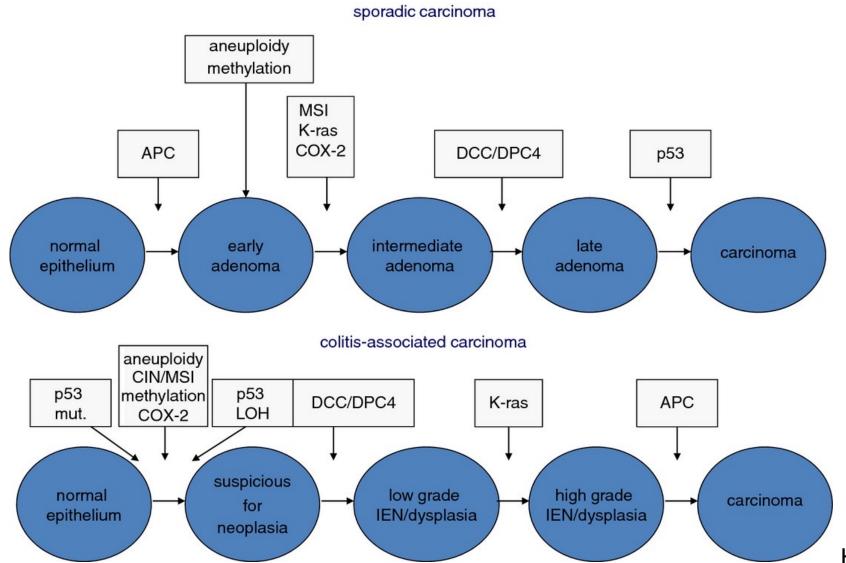
Stricturoplasty vs Resection for Fibrostenotic Crohn Disease

Perianal Crohn Disease

Focus on Challenging or Controversial Topics

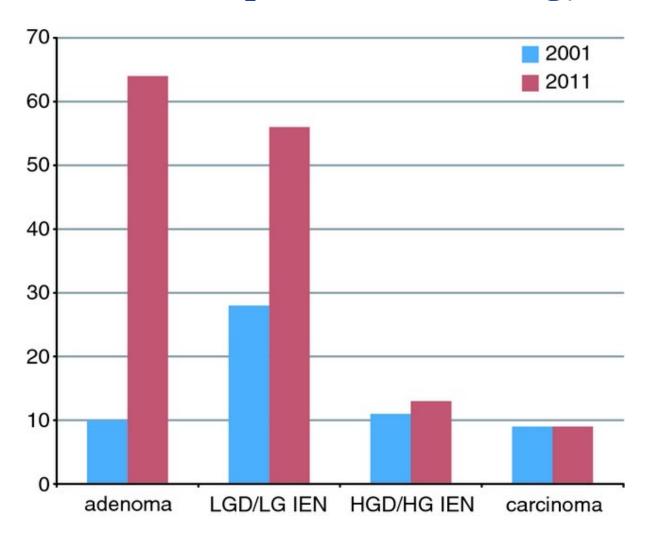


Dysplastic Lesions in Ulcerative Colitis


Carcinoma

Increased in UC and CD

- 95/100,000
- UC
 - 2% at 10 years
 - 8% at 20 years
 - 18% at 30 Years
- CD
 - 8% at 22 years



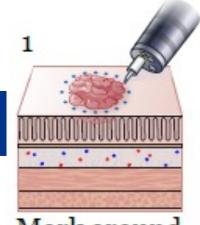
IBD Cancer pathway may be different from sporadic CRC

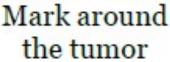
Histopathology 2015

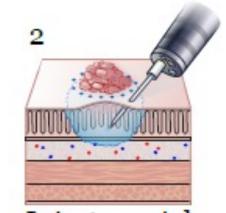
Improved Detection with Improved Technology

Evolution of dysplasia detection and management

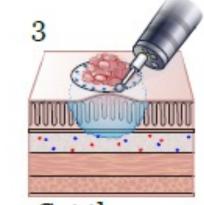
Time period	Detection Strategy	Management Approach
Pre-colonoscopy (pre-1970)CRC natural history of IBD	No strategy to detect dysplasia	Proctocolectomy with ileostomy
Early colonoscopy (1970s-90s)	Most dysplasia is "invisible" Random biopsies	Restorative proctocolectomy vs ileostomy
Early 2000s	Most dysplasia is visible Random biopsies	LGD→polypectomy vs colectomy HGD→laparoscopic restorative proctocolectomy
 Present High Definition endoscopy Chromoendoscopy EMR and ESD High tech tools for resection 	Most dysplasia is visible Targeted biopsies with improved visualization	Endoscopic resection of discrete lesions Surgery for select cases (MIS)

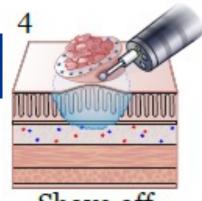

Visible Dysplasia

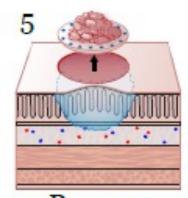

Resectable

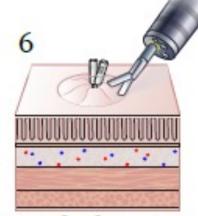

- Distinct margin on endoscopy
- Lift and hot snare
- Complete removal
- Negative margins on histology
- **Negative biopsies from the periphery** and base

Non-resectable


- Large size (>2cm)
- Inability to lift
- Poorly delineated margins




Inject special tumor to lift it


Cut the area fluid under the around the tumor

Shave off the tumor

Remove the tumor

Stitch the area, if needed

Visible Dysplasia

Colectomy

- HGD
- CRC
- Multifocal LGD
- Incompletely resected dysplasia
- Recurrent

Continued Surveillance

- Completely resected LGD
 - 6% annual incidence of any dysplasia
 - 0.5% annual incidence of CRC

Challenges in Management of Invisible Dysplasia

Uncertainty

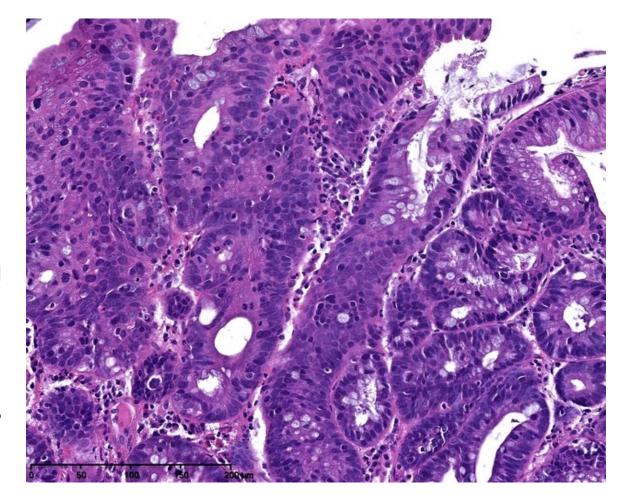
Histological interpretation

Likelihood of progression to CA

Ability to do effective surveillance

Strategy to prevent progression

Lesions not seen


Treatment options

Colectomy

- What if pathologic interpretation was wrong
- What if lesion is small and endoscopically resectable?

Surveillance

- What if endoscopist can't find the lesion again and patient progresses to CA?
- Timing of interval frequency for surveillance

Management of visible and invisible dysplasia within a colitis field*										
Endoscopic assessment	Management	Next colonoscopy and comments								
 < 2cm + resectable (clear border, no features of submucosal invasion or fibrosis) + no histologic features of invasive cancer 	Endoscopic resection with continued surveillance	 3–6 months: high-grade dysplasia or incomplete resection 12 months: > 1cm, low-grade dysplasia (LGD) 24 months: < 1cm or pedunculated, LGD 								
 Large (≥ 2cm) Complex (i.e. lateral spreading, highly irregular or indistinct border) Incomplete resection after several attempts Local recurrence 	Endoscopic resection with intensive surveillance vs surgery	 Every 3–6 months for first year (if resect) Decision to resect based on lesion details, local expertise, disease activity 								
 Unresectable due to size, location, features of invasive cancer or submucosal fibrosis Invasive cancer on histology 	Surgery									
Invisible dysplasia (non-targeted biopsy) or subtle/ poorly delineated lesion (targeted biopsy)	 Confirm histology with second pathologist Treat inflammation Perform dye spray chromoendoscopy (DCE) 	Use DCE to unmask subtle lesions. If no lesion seen, take extensive non-targeted biopsies in area of prior dysplasia. Use box A or B to manage.								
		→ aga								

Management when no visible dysplasia is detected on DCE*									
Histologic assessment	Management	Next colonoscopy and comments							
Persistent high-grade or multifocal invisible dysplasia	Surgery								
Persistent unifocal low-grade invisible dysplasia	Intensive surveillance	3–6 months if prior high-grade or multifocal dysplasia; 6–12 months if prior							
No histologic dysplasia	with DCE **	low-grade dysplasia. Continue intensive surveillance until 2 consecutive negative high quality DCE exams.							

^{*}Consider expert opinion if uncertainty; ** Although intensive surveillance proposed, long-term management is uncertain. Discuss risks and benefits of surgery vs surveillance based on current and past inflammatory burden, quality of mucosal visualization, mucosal details from where dysplasia initially detected, and other CRC risk factors.

ECCO Guideline/Consensus Paper

Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 1: Definitions, Diagnosis, Extra-intestinal Manifestations, Pregnancy, Cancer Surveillance, Surgery, and Ileo-anal Pouch Disorders

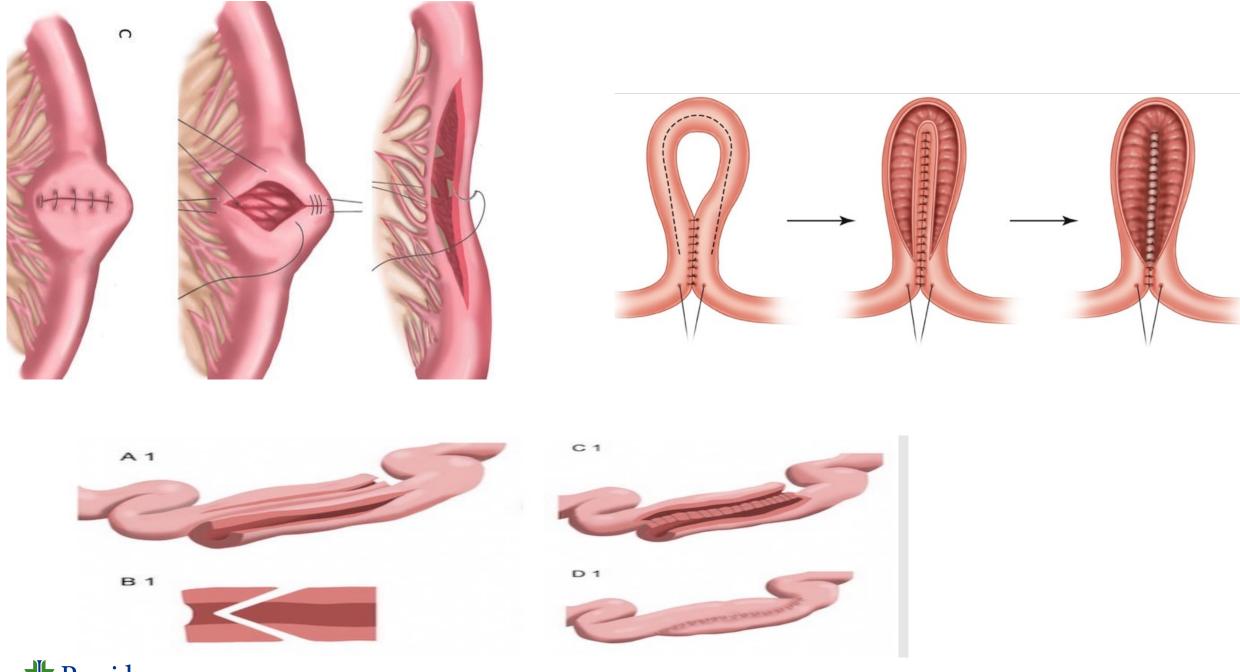
Fernando Magro,^{a,†} Paolo Gionchetti,^{b,†} Rami Eliakim,^{c,#} Sandro Ardizzone,^d Alessandro Armuzzi,^e Manuel Barreiro-de Acosta,^f Johan Burisch,^g Krisztina B. Gecse,^h Ailsa L. Hart,ⁱ Pieter Hindryckx,^j Cord Langner,^k Jimmy K. Limdi,^l Gianluca Pellino,^m Edyta Zagórowicz,ⁿ Tim Raine,^o Marcus Harbord,^{p#} Florian Rieder;^q for the European Crohn's and Colitis Organisation [ECCO]

8.5.3. Management of endoscopically visible dysplasia

ECCO statement 8L

Polypoid dysplasia can be adequately treated by polypectomy provided the lesion can be completely excised, and there is no evidence of non-polypoid or invisible dysplasia elsewhere in the colon [EL 2]

ECCO statement 8M


Non-polypoid dysplastic lesions can be treated endoscopically in selected cases. If complete resection can be achieved, with no evidence of non-polypoid or invisible dysplasia elsewhere in the colon, continued surveillance colonoscopy is reasonable [EL 5]. Every other patient with non-polypoid dysplasia should undergo colectomy, regardless of the grade of dysplasia detected on biopsy analysis [EL 2]

Focus on Challenging or Controversial Topics

Stricturoplasty vs Resection for Fibrostenotic Crohn Disease

Providence

Waqas T. Butt ¹ • Éanna J. Ryan ^{1,2} • Michael R. Boland ¹ • Eilis M. McCarthy ³ • Joseph Omorogbe ³ • Karl Hazel ³ Gary A. Bass ¹ • Paul C. Neary ^{1,4} • Dara O. Kavanagh ^{1,4} • Deirdre McNamara ^{3,4} • James M. O'Riordan ^{3,4}

	SPX	(BR			Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year	r M-H, Fixed, 95% CI
Ozuner (1996)	17	52	27	110	35.8%	1.49 [0.72, 3.08]	1996	5 +-
Broering (2001)	11	27	13	47	17.3%	1.80 [0.66, 4.88]	2001	1 +-
Sampietro (2004)	25	56	17	46	31.7%	1.38 [0.62, 3.05]	2004	4 ——
Roy and Kumar (2006)	5	19	1	7	3.3%	2.14 [0.20, 22.48]	2006	5
Tonelli (2010)	3	14	4	14	9.7%	0.68 [0.12, 3.83]	2010)
Romeo (2012)	5	19	1	20	2.2%	6.79 [0.71, 64.72]	2012	2
Total (95% CI)		187		244	100.0%	1.57 [1.02, 2.42]		•
Total events	66		63					
Heterogeneity. $Chi^2 = 2$.	78, df = 5	5 (P = 0	0.73); 12	= 0%				
Test for overall effect: Z	= 0.0	4)					0.01 0.1 1 10 100' Favours SPX Favours BR	

Fig. 2 Forest plot comparing overall recurrence in patients with SPX vs BR

updat

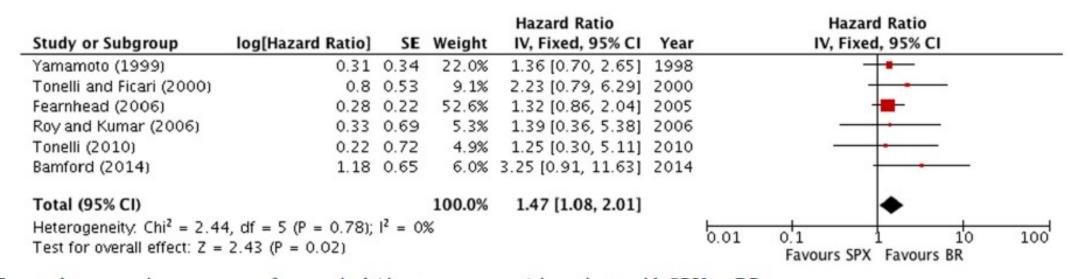


Fig. 3 Forest plot comparing recurrence-free survival (time to recurrence) in patients with SPX vs BR

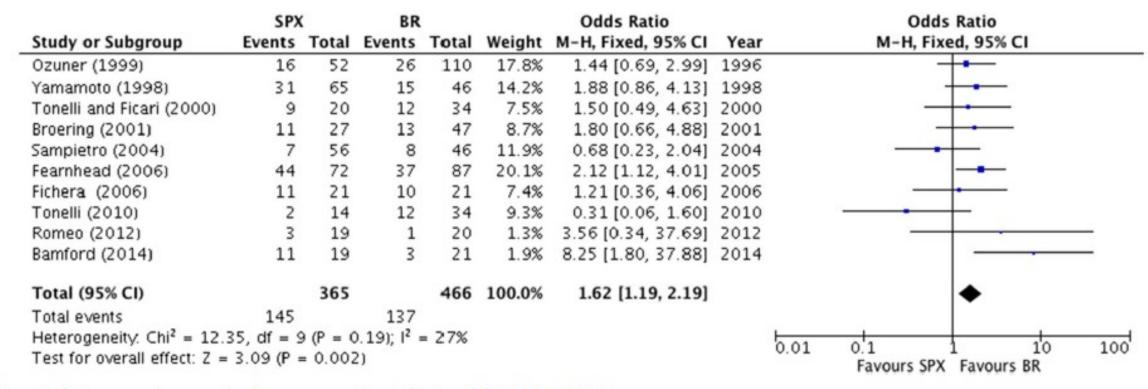


Fig. 4 Forest plot comparing surgical recurrence in patients with SPX vs BR

	SPX	(BR			Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
Ozuner (1996)	1	52	9	110	23.1%	0.22 [0.03, 1.78]	1996	-
Sampietro (2004)	18	56	9	46	47.8%	1.95 [0.78, 4.88]	2004	+
Tonelli (2010)	3	14	4	14	29.1%	0.68 [0.12, 3.83]	2010	-
Total (95% CI)		122		170	100.0%	0.87 [0.25, 3.05]		
Total events	22		22					
Heterogeneity. Tau2 =	= 0.64; CI	$ni^2 = 4$.	10, df =	2(P =	0.13); I2	= 51%		101 11 101
Test for overall effect	Z = 0.22	P = 0	.82)					0.01 0.1 1 10 100 Favours SPX Favours BR

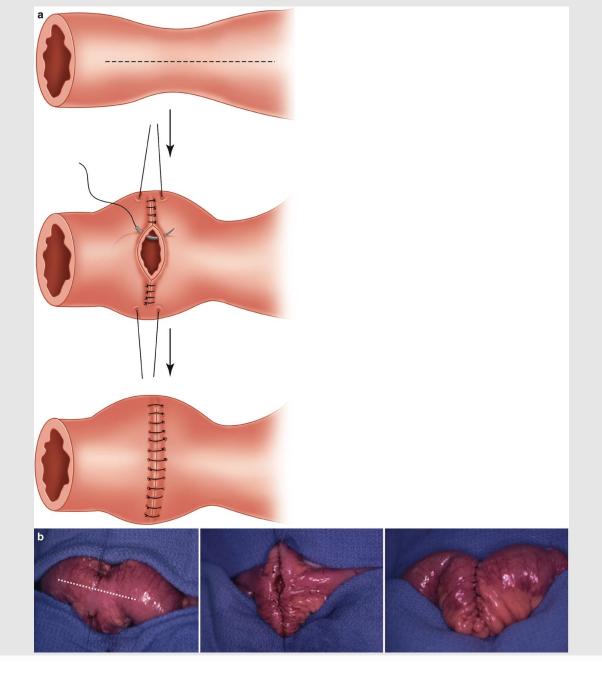
Fig. 5 Forest plot comparing medical recurrence in patients with SPX vs BR

	SPX	(BR			Odds Ratio			Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year		M-H, Fixed, 95% CI	
Cristaldi (2000)	0	14	2	14	14.4%	0.17 [0.01, 3.94]	2000	\leftarrow	•	
Broering (2001)	4	27	8	47	29.7%	0.85 [0.23, 3.13]	2001			
Tonelli (2010)	0	14	2	14	14.4%	0.17 [0.01, 3.94]	2010	←		
Romeo (2012)	0	19	2	20	14.2%	0.19 [0.01, 4.22]	2012	\leftarrow	-	
Bamford (2014)	6	19	7	21	27.2%	0.92 [0.25, 3.48]	2014			
Total (95% CI)		93		116	100.0%	0.58 [0.26, 1.28]			•	
Total events	10		21							
Heterogeneity: Chi2 =	2.45, df	= 4 (P	= 0.65);	$1^2 = 0\%$;			0.01	012	100
Test for overall effect:	Z = 1.35	5 (P = 0	.18)					0.01	0.1 1 10 Favours SPX Favours BR	100'

Fig. 6 Forest plot comparing overall morbidity in patients with SPX vs BR

Summary

Compared to strictureplasty, bowel resection for fibrostenotic crohn's disease results in improved


- Overall recurrence
- Recurrence free survival
- Surgical recurrence

But with

Higher morbidity*

And

• No difference in medical recurrence

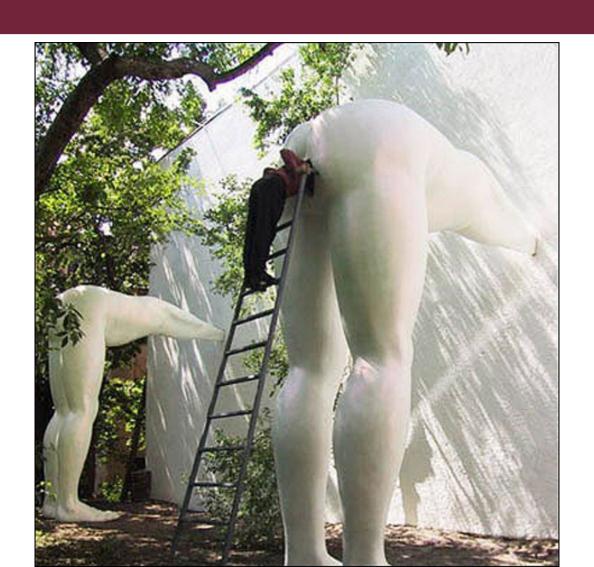
Focus on Challenging or Controversial Topics

Perianal Crohn Disease

20% of patients with CD will present with some anal or perineal involvement

Risk increases with time

Anus or perineum eventually involved in 60 to 80% of patients


Fissure
Skin tag or hemorrhoid
Cavitating ulcer
Fistula
Abscess
Anorectal stricture
Carcinoma

Exam under anesthesia

Stages of Therapy

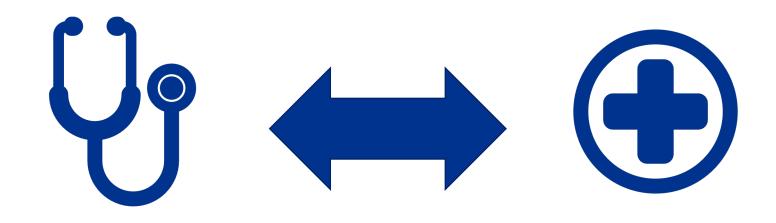
Control of the Acute Disease

Drainage of abscess

Placement of noncutting seton

Stabilization

Antibiotics


Immunomodulators

Operative Management

Risk of incontinence

Risk of recurrence

Medical

Surgical

CURE

CONTINENCE

Surgical Options

Drain Abscess

Seton

- Short term
- Long term

Fistulotomy

LIFT

Modified LIFT

Rectal advancement flap

Dermal advancement flap

Stem cell injection


Stoma/APR

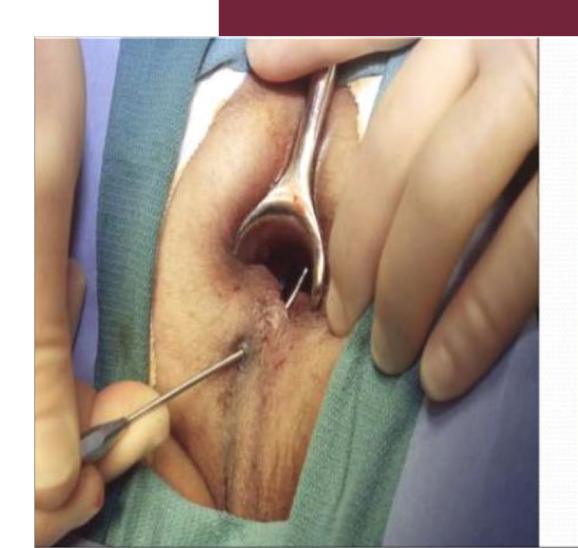
RVF

- Martius flap
- Gracilis muscle flap

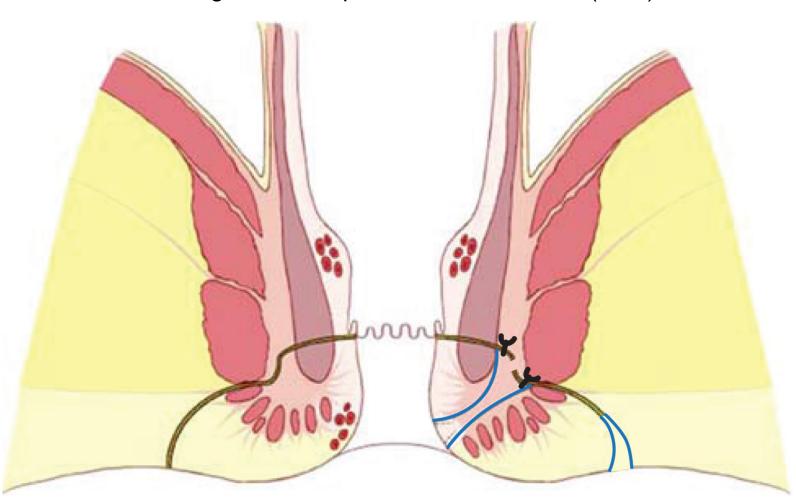
Drain Abscess

Seton

- Short term
- Long term



Chronic Fistulas, Recurring Abscesses


Fistulotomy

LIFT

Ligation Intersphincteric Fistula Tract (LIFT)

LIFT Procedure (Ligation of the Intersphincteric Fistula Tract)

Disrupt the fistula (cure)

Don't divide sphincter complex (continence)

Initial Results

• **Success >90%**

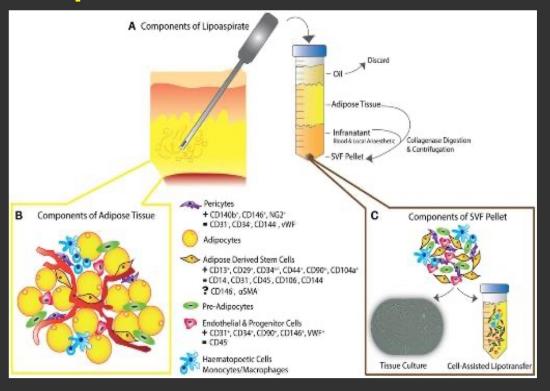
Long-term results

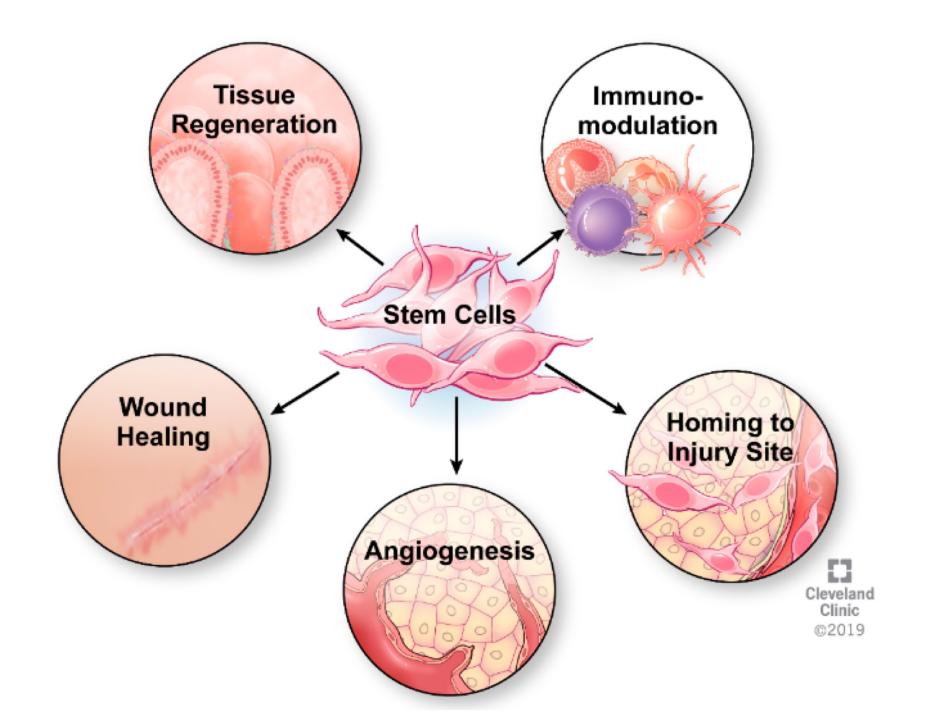

Success ~45%

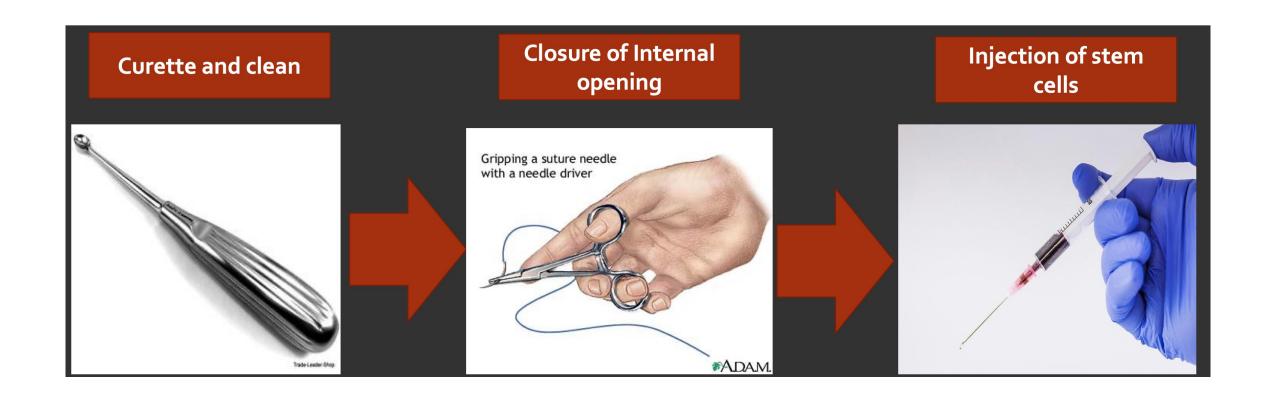
Challenging when:

- Multiple
- Deep
- Suprasphincteric/Extrasphincteric
- Bifurcated
- Abscess
- Recurrent

LIFT

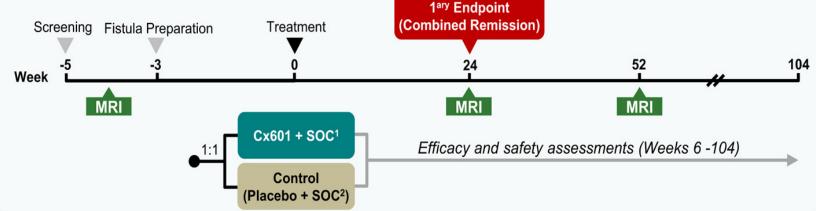


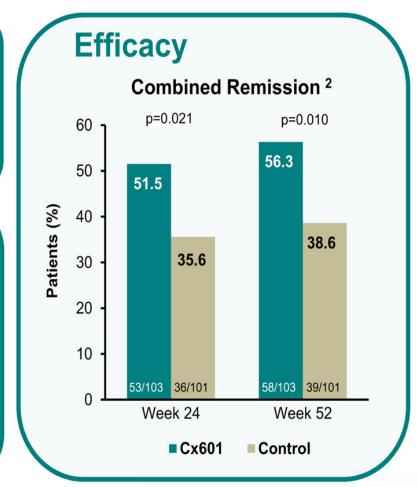

Stem cell injection


Bone marrow (mesenchymal) aspiration Initial seeding Bone marrow MNCs FicoII gradient Haematopoietic stem cells Expansion Stromal stem cells CD105: 99.9% to human

Mesenchymal stem cells (MSCs)

Adipose tissue (Fat)

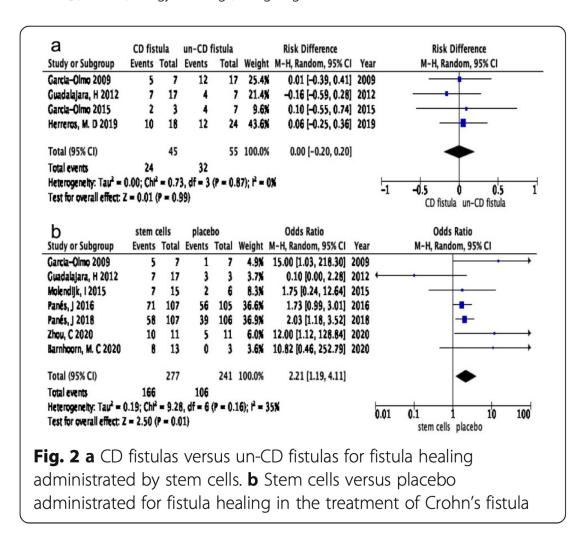



ADMIRE CD Study: Cx601 for Complex Perianal Fistulas in Crohn's disease

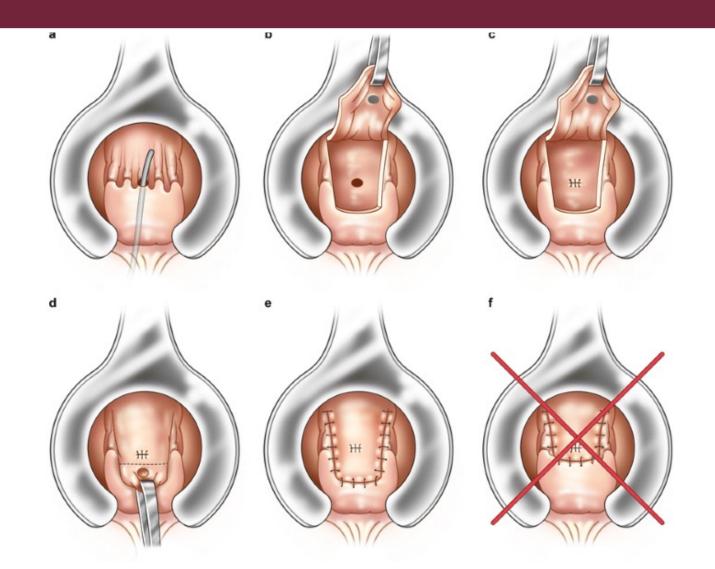
Treatment

Cx601 is a suspension of allogeneic expanded adipose-derived stem cells (eASC) injected locally, and has been shown to be efficacious and well tolerated in Crohn's disease patients with treatment-refractory complex perianal fistulas

Study design



Gastroenterology


1. Standard of care; 2. mITT population (modified intention to treat)

Efficacy of stem cells therapy for Crohn's fistula: a meta-analysis and systematic review

Yantian Cao¹, Qi Su², Bangjie Zhang¹, Fangfang Shen³ and Shaoshan Li^{2*}

Rectal advancement flap

Stoma/APR

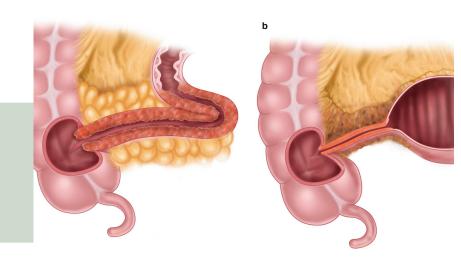
- If all else fails
- Often still anal leakage due to mucus
- Avoids a perineal stoma
- Not without its own problems

Summary: Surgical Treatment of Anal Crohn's Fistula

Complex Problem

Coordinated care between GI and Surgery

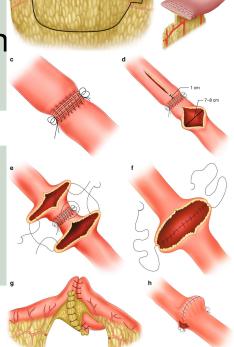
Treat symptoms



Preserve anal function, eye to future problems

Future controversial discussions

Primary surgery for terminal ileal CD



Kono-S or other configuration for ileocolic reconstruction

Mesenteric excision in CD recurrence

The Role of Surgery in the Treatment of Inflammatory Bowel Disease

Who, When, and Where to Send to Surgery

September 2023 Amir Bastawrous, MD, MBA, FACS, FASCRS Swedish Colon and Rectal Clinic